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NSWC/WOL/TR 75-195 20 December 1975
NORMAL IMPINGEMENT OF A SUPERSONIC JET ON A PLANE - A BASIC
STUDY OF SHOCK-INTERFERENCE HEATING

This report presents a theoretical method to predict the severity
of shock-interference heating caused by the impingement of a shock
wave on a blunt fin. The problem of a supersonic jet (resulting
from the interaction of the incident shock with the fin bow shock)
impinging on the fin surface was studied based on the one-strip
formulation of the method of integral relations. A rational
engineering rolution for the stagnation-point velocity gradient
(and hence the peak heat-transfer rate) has been obtained for the
planar case. The present jet-impingement model could be coupled
with the shock-interference model of Edney to predict type IV shock-
interaction effects.

The present study was sponsored by the Naval Air Systems Command,
AIR-320C, under Air Task No. A320-320C/WR023-02-003.

KURT R. ENKENHUS

By direction

771



NSWC/WOL/TR 75-195

CONTENTS

Page

INTRODUCTION ................................................ 4

PROBLEM FORMULATION ................................... 6
Governing Equations ....................................... 6
Method of Integral Relations - Schteme I ................... .II
Method of Integral Relations - Scheme III ................. 14

RESULTS A0D DISCUSSION ..................................... 20
Planar Jet Impingement .................................... 21
Axisymmetric Jet Impingement .............................. 22

CONCLUSIONS ................................................ 23

APPENDIX A - Two-Strip Formulation of the Jet-Impingement
Problem............................ A-i

TABLES

Table Title Page

la-c Planar Jet Impingement: One-By-Two Solutions ....... 24
2a-f Planar Jet Impingement: One-By-Three Solutions ..... 26
3a-b Axisymmetric Jet Impingement: One-By-Two Solutions . 28

ILLUSTRATIONS

Figure Title Page

1 Schematic Diagram ................................... 29
2 Universal Curve for y = 1.4 ......................... 30
3 Stagnation-Point Velocity Gradient: Comparison

Between GMC and MCE Methods for Planar Case ....... 31
4 Stagnation-Point Velocity Gradient: Effects of

Approximating Functions for Planar Case ............ 32
5 Thickness Distribution: GMC Methods for Pl&nar

Case .............................................. 33
6 Thickness Distribution: MCE Methods for Planar

Case .............................................. 34
7 Thickness Distribution: GMC-SP Methods for Planar

Case .............................................. 35
8 Mach Number Behind Shock and Plate Mach Number at

r = 1 for Planar Case ............................. 36
9 Shock Angle at r = 1: Effects of Approximating

Functions for Planar Case ......................... 37
10 Shock Angle at r = 1: Comparison Between GMC and

MCE Methods for Planar Case ...................... 38
11 Surface Pressure Distribution: Comparison Between

GMC and MCE Mathods for Planar Case ............... 39

2



- - -- ---------

NSWC/WOL/TR 75-195

SYMBOLS

a speed of soundIE specific entropy function, p/py

j equal to zero (planar case) or one (axisymmetric case)

M Mach number

p static pressure
2 21/2

q total speed, (u + V2)

r coordinate axis along the plate surface

u velocity component in the r-direction

v velocity component in the y-direction

V. free-stream velocity of the jet

y coordinate axxs perpendicular to the plate surface

a constant, (y - 1)/2y

y ratio of (constant) specific heats

6 the angle the upper boundary of the wall jet makes with
respect to the negative y-direction (see Fig. 1)

detachment distance of the shock wave or of the wall-jet
boundary (see Fig. 1)

n location of the sonic point at the wall

O the angle the flow behind the shock wave makes with respect
to the negative y-direction

p density

o the angle the shock wave makes with respect to the negative
y-direction (see Fig. 1)

GMC method that employs the equation of global mass

conservation, Eq. (41)

tMCE method that employs the equation of modified continuity,
Eq. (7)

PWS method that employs piecewise smooth approximating functionsiI
3
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SYMBOLS (Cont'd)

SP method that imposes the condition of satisfying Eq. (56)
at r = 0

Subscripts

j at the upper boundary of the wall jet

s at the shock wave

w at the plate surface

at the surface sonic point

0 at r = 0

1 at the line of the jet edge, r = 1

2 at r = 1/2

at free stream

INTRODUCTION

As an extraneous shock wave impinges on a blunt body in a
hypersonic flow, greatly increased aerodynamic heating and pressure
over a very small region near the impingement point have been
observed (Refs. (1) to (5)). The incident shock wave may be
generated either by boundary-layer separation (Refs. (3) to (5)) or

(1) Edney, B., "Anomalous Heat Tranafer and Pressure Distributions on
%lunt Bodies at Hypersonic Speeds in the Presence of an Impinging
Shc-k," .FA Report 115, The Aeronautical Research Institute of
Swejen, Stockholm, 1968

(2) HainL. F. D. and Keyes, J. W., "Shock Interference Heating in
Hypersonic Flows," AIAA Journal, Vol. 10, 1972, pp. 1441-1447

(3) Hiers, R. S. and Loubsky, W. J., "Effects of Shock-Wave Impinge-
ment on the Heat Transfer on a Cylindrical Leading Edge," NASA
TN D-3859, Ames Research Center, Moffett Field, Calif., 1967

(4) Kaufman, L. G., III, Korkegi, R. H. and Morton, L. C., "Shock
Impingement Caused by Boundary Layer Separation Ahead of Blunt
Fins," ARL TR 72-0118, Aerospace Research Laboratories, WPAFB,
Ohio, 1972

(5) Gillerlain, J. D., Jr., "Experimental Investigation of a Fin-
Cone Interference Flow Field at Mach 5," NSWC/WOL/TR 75-63} Naval Surface Weapons Center, White Oak Lab., Silver Spring, Md.,

1976
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At by an extraneous surface (Refs. (1) to (3)). Six different types of
shock-interaction patterns have been classified by Edney based on an
extensive experimental study (Ref. (1)). Among them, the type IV
interference pattern.produces the most severe shock-in ,rference
heating and pressure. This interference results in a supersonic jet
embedded in the subsonic flow field. In fact, peak interference
heating rates up to 17 times the interference-free stagnation-point
value and peak pressures up to eight times the free-stream pitot
pressure level have been measured by Hains and Keyis (Ref. (2)).

Despite its significance, past analyses (Refs. (1) to (3) and
(6)) on the type IV interference were inadequate and generally
empirical in nature. Recently, a time-dependent finite-difference
method was used by Tannehill, Holst and Rakich (Ref. (7)) to solve
the Navier-Stokes equations for the two-dimensional shock-
impingement problem. Although, in principle, their computer program
can be used to compute all six types of shock interactions, only
type III interference results have been published so far. However,
the elaborate computations involved and the extensive computer time
required by their method make it highly desirable to have some
relatively simple, yet reasonably accurate, approximate method.
Such an approach has in fact been pursued by Edney (Ref. (1)) and by
Keyes and Hains (Ref. (6)). However, their empirical treatments of
the jet-impingement process suggest the need for a more rational
study. This is the subject of the present paper.

The impingempnt of a balanced supersonic jet on a flat surfacewas studied both theoretically and experimentally for an axisynuretric
jet at normal impingement by Gummer and Hunt (Ref. (8)), and
theoretically for a plane jet at an arbitrary angle with the surface
by Bukovshin and Shestova (Ref. (9)). Both grouips have used the
scheme I of the method of integral relations in its crudest form
(one strip) (Ref. (10)). However, in both studies the centered

(6) Keyes, J. W. and Hains, F. D., "Analytical and Experimental
Studies on Shock Interference Heating in Hypersonic Flows,"
NASA TV D-7139, Langley Research Center, Hampton, Va.. 1973

(7) Tannehill, J. C., Holst, T. L. and Rakich, J. V., "Numerical
Computation of Two-Dimensiona] Viscous Blunt Body Flows with
an Impinging Shock," AIAA Paper 75-154, AIAA 13th Aerospace
Sciences Meeting, 20-22 Jan 1975

(8) Gumnez, J. 11. and Hunt, B. L., "The Impingement of a Uniform,
Axisymmetric, Supersonic Jet on a Perpendicular Flat Plate,"
The Aeronautical Quarterly, Vol. XXII, Part 4, 1971, pp. 403-420

(9) Btikovshin, V. G. and Shestova, N. P., "Incidence of Plane
Supersonic Jet on a Plane at an Arbitrary Angle," Fluid Dynamics,
Vol. 2, No. 4, 1967, pp. 97-100

(10) Belotserkovskii, 0. M., ed., "Supersonic Gas Flow Around Blunt
Bodies," NASA Technical Translation TTF-453, sane 1967
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expansion to 3mb.::nt pressure of the jet-edge streamline behind
the shock wave uez not properly considered, and instead an empirical
condition of sonic velocity at the jet edge behind the shock wave
was imposed. Viirthermore, at low supersonic Mach numbers, both
South (Ref. (.1)) and Gunmer and Hunt (Ref. (8)) have pointed out
the singular behavior of the governing equation of the scheme I of
the method of integral relations. This singularity, which has no
counterpart in an exact solution, will cause the computation in the
shock layer to break down. This is of special importance to us
since, according to Edney (Ref. (1)), low supersonic Mach numbers
are in the range of particular interest to the shock-interference
problem.

The singular: , can be shown to be easily removed if the
governing d-fferent-al equations are integrated -.ice again along the
body-surface direction. This constitutes the scheme III of the
method of integra± relations (Ref. (10)). This approach was
utilized in the presc,'t study to generate golutions to the one-strip
approximation equations of the jet-impingeient problem. As we shall
show- later, in contrast to th• findings reported by Gummer and
Hun: (Ref (8)), the one-strip approximation does yield solutions
thz.. .ati,.fy dil well-posed boundary conditions. A two-strip
fo" atiT o '-he problem h-s also been completed, but solutions
havý )t yet h sn :arried out. For the sake of completeness, this
is i.ud d' ir -e. -'¢ .ppendi-.

PROBLEM FORMULATION

GOVERNING EQUATIONS
Consider the flow geometry schematically shown in Figure 1.

The origin of the coordinate system is placed at the stagnation
point of the flat surface. The problem is considered to be steady
and two-dimentlonal or axisymmetric, with r and y axes along and
perpendicular to the plate surface, respect.vely, and the free-
stream jet flow is in the negative y-directioýn. For simplicity, the

gas is assumed to be inviscid and obeys the perfect gas law; its
conditions are characterized by the pressure, p, density, p,
tempereture, T, and velocity components, u and v, in the r and y
directions, respectively. Ahead of the shock wave, the jet is
assumed to be uniform with constant static pressure equal to the
ambient value. These assumptions are of the usual kind that 3re
generally made by other investigators. Heat-transfer rates can be
calculated using the well-known boundary-layer results once the
pressure distribution aleng the plate surface is determ- ed from the
inviscid approach.

(11) South, J. C., Jr., "Calculation of Axisymmetric Supersonic
Flow Past Blunt Bodies with Sonic Corners, Including a Program
Description and Listing," NASA TN D-4563, Langley Research
Center, Hampton, Va., 1968
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Under these conditions, the governing conservation equations
aj~e

ý'(rJpu) + 2. (rJpv) = 0 (i)
ar ay

-_(rjpuv) + i__(rj(ap + Pv2)] -0 (2)ar a

a [rj(ap + Pu2 )] + (r puv) = j$p (3)

2 P(l q 2 (4)

where
(Y

2y
2 u 2 +v 2

q

j = 0 or .- for two-dimensional or axisymmetric jets, respectively,
and y is the ratio of (constant) specific heats. The variables
are all nondimensiona.. Thermodynamic variables are non-
dimensionalized by the corresponding etagnation values in the free-
stream jet, velocities by the maximum adiabatic velocity and
distance by the jet radius. Obviously, the magnitude of the non-
dimensional free-stream jet velocity is related to the free-streamjet Mach number by

2 + (y - I)Mo
There is also a geometric relation

de cota (5)

in the shock layer, and

d-_ = - cot6 (6)

in the wall-jet layer, where e is the detachment distance of the
shock wave or of the wall jet, a and 6 are the angles the shock
wave and the upper boundary of the wall jet make with respect to
the free-stream jet flow direction, respectively (see Fig. 1).

The method of integral relations requires that the governing
partial differential equations be cast into divergonce form, such
as Equations (1) to (3). However, combinations of these equations
can also be reprosented in divergence form. For example, one may

7

!I



NSWC/WOL/TR 75-195

combine the r'_lation of constant entropy along streamlines, the
energy equation (4), and the continuity equation (1) to yield a
modified continuity equation

i/(¥-i) I(Y-1)
•r[rju(i - q2)!] + ' [rJv(l - q2) • ] 0 (7)

which was the original, widely employed formulation of
Belotserkovskii (Ref. (12)). For a sphere in supersonic flow,
Xerikos and Anderson (Ref. (13)) found that the one-strip formulation
based on the modified continuity equation yielded results which
agree with experiments better than that based on the original
continuity equation. The difference is expected to disappear when
the number of strips increases. In the present one-strip formu-
lations, however, Equation (7) will be used instead of Equation (1).

An additional simplification arises when only one strip is
used in the formulation, namely, the strip boundaries are either
the shock wave or streamlines. Along the plate surface, the
constant entropy relationship can be used to relate pressure to the
surface velocity. This algebraic relation can thus be employed to
replace the radial momentum equation (3), as we shall see in the I
next section.

The flow field can be divided into two regions, a shock-layer
region (0 S r 1 1) and a wall-jet region (1 S r • Ti); wheze r =
is the location of the sonic point at the wall

uw (N) = a (i) f
and it is unknown, a priori. The two regions are related by the
requirements that, at r = 1, c, E and 1P are continuous and o and 6
are governed by the Prandtl-Meyer expansion relation, where E is
the specific entropy function

E = p/py

and ý is the stream function. If 8 is the angle the flew behind the
shock wave makes with respect to the negative y-direction, then the
oblique snock relations give

2

cot 01 (M12 Sin2 )(8)

(12) Belotserkovskii, 0. M., "Flow With a Detached Shock Wave About
a Symmetrical Profile," Journal of Applied Mathematics and
Mechanics, Vol. 22, 1958, pp. 279-296

(13) Xerikos, J. and Anderson, W. A., "An Experimental Investigation
of the Shock Layer Surrounding a Sphere in Supersonic Flow,"
AIAA Journal, Vol. 3, 1965, pp. 451-457

8
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where the subscript 1 denotes quantities evaluated at r = 1. Now,
1 is related to 01 by
1 1

-1 1/2 / /2
Satan (M -+ )

- tan (%4s -1 ) ())
-3. 2 1/2

- ta (1 sl 1)(9)

where
2 2

M2 ? 2q : 2q=
S (Y -)pj (y -i( q 2

and
2q~sM 2 2sl2

=y - 1)(1 - qsl)

The subscripts j and s denote, respectively, quantities evaluated
at the upper boundary of the wall jet and right behind the shock
wsave. Obviously,

pj= = [1+ 7 + 2 M; (10)

Pj = (pj/Ej) i/y (11)

Ej = E (12)

and

- (i - pj/pj) 1 / 2  (13)

The specific entropy function evaluated right behind the shock at
r = 1, Esl, depends only on M., y and a1 . Hence, from Equations (8)

to (13), we obtain

61 = fun(M•,,y,a1 )

Since the upper boundary of the wall-jet layer, y = c(r) for r >- 1,
is a streamline, we have

9
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de V.
= -2 = - cot 6 (14)

For 6 in the first two quadrants only, we may combine Equations (4)
and (14) to yield

u = qj sin 6 (15)

vj = -qj cc 6 (16)

The signs are determined from the fact that u. > 0 for r 1 1. The
boundary conditions are:

A. At the wall, y = 0

vV= 0 (17)

w =Es (18)

where Eso is the specific entropy function evaluated right behind
the shock at r --- 0.

B. At the centerline, r = 0

u- 0 (19)

E =E (20)

a n/2 (21)
C. At the shock wave, y = e(r), r 1 1, the Rankine-Hugoniot

relations for the gas apply:

u = V 2 cot a_ (M2sin 2 a )]22)

II
(Y+ 1)m 2 M

-- V(+V1r(M2siin -i) 1sy - L)M1 1(y ')rM 2-2 (24)
S=L2 +[ 2- 1)M2sina 1 (23)

s- 2

10-- 
4 * ..I 

. ~ -

. .o



NSWC/WOL/TR 75-195

= .... a (Y - 1) 2 + (Y -- l)M0sin 20Ey (25)

W2 Msi~ (Y + [2 Y + M 2sin 2a

P E p (26), Ps = Ess

D. At the jet boundary, y = e(r), r >_ 1, Equations (8) to (16)
apply.

METHOD OF INTEGRAL RELATIONS - SCHEME I

A. SHOCK-LAYER REGION. Integrating the axial momentum
equation FT) from 0 to e, and utilizing the identity.that

c(r) (r)

-(rJ puv)dy " au j - dr sf 3r{ r f~ ud U- rrPsUsVs

0 0

we obtain

•(r) de -2 Pw2} 2"
d r9 puvdy - dr p u vs + r{(ps -Pw) + Pss -Pv 0 27

0

In the first approximation, the integrand is assumed to be linaar in
y so that Equation (27) is approximated by

!d [rrcpsusvs] + 2rJ{8(ps - + psvs(vs + uscot a)} = 0 (28)d sw + Pss(s ss

Equations (5) and (17) have been used in the above equation.
Similarly, Equation (7) can be integrated over the thickness of the
shock layer to yield

d rJ 2 i/(yl) 1/--q)d- s - qS)+Uwl-w2

z/(y-l)

+2rj( - q2) [v + uscot a] = 0 (29)

From Equations (4) and (18) and the definition of the specific
entropy function, we obtain the algebraic relation that

PW M -- Eso w(30)

Since, for fixed values of M. and y, the quantities evaluated at the
shock depend only on a (as can be seen from the Rankine-Hugoniot

11
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relations), Equations (5), (28) and (29) are the governing equations
for the variables c, a and u . This constitutes the scheme I of the
method of integral relations% Initial conditions are Equations (19)
and (21). It is well known in related blunt-body problems that the
missing third initial condition is supplied by the regularity
condition at the surface sonic point (Refs. (10) to (12)). For the
jet-impingement problem, this requires the consideration of the wall
jet since the surface sonic point lies outside the shock layer
(Ref. (8)). Before we proceed any further, it is important to point
out a singular feature of the scheme I formulation. The singularity
occurs as

d(PsusvS)
da

in Equation (28) and •becomes unbounded. This has no counterpart

in an exact solution. As was remarked by South (Ref. (11)) and by
Gummer and Hunt (Ref. (8)), the singularity occurs in the shock
layer for MC, - 2. In fact, Gummer and Hunt found no solution thatd(psusv)
will satisfy the wall-jet relations. Since d( u will appear

in any method that approximates the integral in Equation (27) by anend-point guadrature formula, this singularity is peculiar to scheme
I of the method of integral relations and cannot be removed by
utilizing multi-strip formulations, although the particular Mach
number at which the singularity occurs might be different from that
of the one-strip formulation. If, on the other hand, the governing
ordinary differential equations are integrated again in the r-
direction, the singularity disappears since we now have algebraic
equations. This is the scheme III of the method of integral relations,
which will be discussed after we complete our consideration of the
wall-jet region in the scheme I formulation.

B. VALL-JET REGION. Integrating Equations (2) and (7) from
the plate to the upper boundary of the wall jet, we obtain

d rJjujvj] + 2r 3 a(pj - P = 0 (31)

and

d-- r j(l - q2 + U/w(1 - ) = 0 (32)

Because of Equation (14), these governing equations are considerably
simpler than the corresponding ones in the shock layer. Utilizing
Equations (15), (16) and (30), one can conclude that Equations (14),
(31) and (32) are the governing equations for the variables c, 6
and uw. Initial conditions are, at r 1

12
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S= 81'.U =Uw wl

6= 1

The first two are supplied by the shock-layer solution, and the third
by using Equation (9) and the shock-layer solution.

Note that

-)/(Y) (2-y)(+ l\2 du
dr_ Luw u / I (luw /(Y) - 1 uwdr

Equation (32) becomes singular as

= =1 - (33)

Utilizing the energy equation and the definition of the speed of

sound

-__P]'/-a2p (33a)

one may show that Equation (33) implies that

uw =a (33b)

Therefore, the singular point is the surface sonic point, r = n.
Since the wall velocity at r = is continuous for a smooth plate,
we may impose the regularity condition that, at r = n

1 + csc6 (1 - cot 2 61 ) 6 wn -) ]cot6r)
qj (i qj 2

(p -
- 2cot6 ncsc2 6 2 - = 0 (34)

PAq

so that d-, is finite there. The subscript n denotes quantities

evaluated at r = n. Equation (34), derived after some tedious but
straightforward algebra frcn Equations (31) and (2. provides the
missing initial condition of the shock-layer equations. This
completes the formulation of the scheme I of the method of integral
relations.

13
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METHOD OF INTEGRAL RELATIONS - SCHEME III
P -Since Gunnier and Hunt (Ref. (8)) could not find solutions that

will satisfy the wall-jet equations by the scheme I of the method of
integral relations, and since they and South (Ref. (11)) have pointed
out the singular behavior of Equation (28) for low supersonic Mach
numbers, the scheme III of the method of integral relations is used
in the present study. Two different formulations have been
considered and they will be discussed in the following.

A. ONE-BY-TWO SOLUTION. Consider first the simplest case that

the flow field between r -0 and r = n is divided into two zones:
0 <- r < 1 and 1 < r < n. Consider, in the shock layer, the
simplest approximation

- Td = coto Z r cotoI (35)

which can be integrated to yield

r 2 coto 

(

0 = -- 2 (36)

where c. = E(r = 0). Equation (36) gives the relation between the
shock distances and ai as

coto1  2(E 0 - (37)

Integrating Equation (18) from r = 0 to 1 and utilizing Equation (19),we obtain

p SuSlvslc 1+ 2frJ{a(Ps - Pw) + Psvs(vs + uscoto))dr = 0 (38)

0
The terms inside the curly brackets are even functions of r. Hence,
we may use the simplest approximating function

f(r) = f 0 + (f1 - f0) 2

and Equation (38) thus becomes

PslUslVslCl + (j + l)(j + 3) [Ps5 0v 0 + 8(ps 0 - PwO)
mr2 (vs+ sCt + u+ 0(psl - ] = 0 (39)+ PslVsl sl 1 1 ( l- Pwl

Obviously, Equation (39), being an algebraic equation, is nonsingular.
Similar application of the simplest approximating function to
Equation (29) yields

14
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[ 2 i/i(y-1) Uw /(y-l)]
•1 Usll - sl) +wl l -

4 (1 v2 2(l-l -/(q-2
+ so + i)s::+o ) + 7l (Vs + Uscotl =0 (40)

$3 + 3)2

We could use, instead of Equation (40), an equation of global mass
conservation

P1 +0 =J JpudyJ = (P + P ) (41)T+ )fr=l 2 slUsl PwlUwl

0

Obviously, pwl is related to uwl by Equations (4) and (30) as

S[- u2 f/(Y-l)
P 1 -wl]

Note that Equation (41) is independent of the approximating functions
used in the radial direction. It depends only on the assumption of
a linear variation of pu with y, which is always the case for a one-
strip formulation.

In the wall jet, 1 -< r :- n, consider

-d = cot6 -- r [(i - r2 )cotU + (r2 - _n2 )cotl6 (42)
dr n(l - n22)

which yields, after a straightforward integration process

1 = C + (r2 _ iL [2( 3cot61 - cot6U)

+ (r 2 + !)(cot6q - ncot61 )]43)

which gives the relation between e. and 6 as
T)

1Y C + (1 " 2 (ncot61 + cot6U) (44)

Equation (31) can be integrated from r = 1 to n to yield

15
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2 1(tJ-E sin6 cos6 E isin61cos6) + 2 rJ(pj Pw)dr =0 (45)
"Pjqj r) r) r

Consider the simplest approximation that

Pw -- [( 2 _ r2)Pw2 + (r2 _ l)Pwn]/n2

Equation (45) thus becomes

- p jqj2(nJcsin6cos6, - clsin~lcos
1 6 1cos6 + 2a pjk 1

)Pwl(n2k 1 k2 + pwn(k 2 - kl1)] (46)

where
k= [(j+l) WO + 1)

and
k2 h [(j+3) -l]/(j + 3)

Similarly, Equation (32) yields
•f q 2l/(y-l) , _ 1/ 2 ,/(Y-l)]

njE 0 ( 1/(Y) Sifl 6 n k+ 1) ~

- 1/(y-l) -2 l/(y-l)
E (1 - q ) sin61 + Uw - u (47)
E[j1 qqi 1 )1 w

The basic governing nonlinear algebraic equations for the one-by-
t#o formulation are Equations (39), (40) or (41), (46), (47) and
(34) for the five basic unknowns: e0., elf T, Uw and 6 n. We note

that it is the consideration of the surface sonic point which
provides two conditions (Eqs. (33) and (34) at r = n) with one
unknown (the location of n) that enables us to close the system.
We shall designate solutions obtained from using Equation (40), the
modified continuity equation, by the symbol MCE, and those from
Equation (41), the global mass conservation equation, by the symbol
GMC.

B. ONE-BY-THREE SOLUTION. In this formulation the wall-jet
region is not modified. The shock layer is divided into two regions:

0 -r - and - r S 1. Denote the quantities evaluated at

r 1 by the subscript 2 and consider a continuous approximating

function

16
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d 2_ = coto r[8(l - r2)coto 2 + (4r - l)cuot 1]/3 (48)

Direct integration yields the equation of shock detachment distance

C = C0 - r 2 [(8coto2 - cota) + 2(coto 2coto2)r2]/6

After some algebra, one may obtain the following relations between
the shock angles and the detachment distances:

coto 2 = (9L 0 - 1 - 8E 2 )/3 (49)

coto3 = (32c2 - 141 - 18C0 )/3 (50)

Equations (28) and (29) are of the form

(If + rjg = 0 (51)

where g is an even function of r. Therefore, one may obtain by
straightforward integrations thati/2

a2 - f 0 +/ r/gdr =0 (52)

and V

f1 - f0 + rjgdr 0 (53)10 053

0

The even function g may be approximated by the Lagrangian inter-
polation formula

g Z g0 (l - r 2 ) (l - 4r 2 ) + gl(4r 2 - 1rr 2 /3 + 16g 2 (1 - r 2 )r 2 /3 (54)

so that the integrals in Equations (52) and (53) become

1/2f rJgdr 2 (H0 g0 + HlgI + H2 g2  (52a)

0
and

frigdr g + I + I (53a)f = 0g0 IlgI I292

0

where
H 1 5 + 1 (52b)

0 TF•-1 " 4(j 3 + 4(j + 5)

H-1 (52c)
1H = 6(j + 3)(j + 5)

17
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H2 i + 1 (52d)H 2 3j + (j -)

1 5 4

(3J + 7) (53c)1! 3( + 3) (j-+

and 32 (53d)
2 (j + 3) j _+5)

We tlherefore have four nonlinear algebraic equations obtainable from
Equations (28) and (29). In addition, there are Equations (46), (47)
and (34) of the wall-jet region. We now have two additional basic
variables, namely, £2 and u W. The system is again closed. This

formulation is termed the one-by-three MCE method. One may also
consider a one-by-three GMC method by using Equation (41) to replace
the equation obtained by integrating Equation (29) from r = 0 %o 1.

It is obvious that other approximating functions can also be
used. For example, if, instead of the continuous representation as
given by Equation (54), the even function g is assumed to be only
piecewise smooth such as

g z go + 4r 2(g 2 - go) for 0 S r _ 2

and -
1 4

g i4 - g, + 4r (g2 -g 2 )] for r :E 1

Equations (i2) and (53) still hold but the constant coefficients, H's
and I's, will be modified accordingly. This constitutes the one-by-
three MCE-PWS method and the corresponding one-by-three GMC-PWS
method. Of course Equations (48) to (30) will also be replaced by
the following piecewise smooth equations:

For 0 < r < 1
-- -- rcot2

C M C 0 - r 2 cOt2

an for I r 4 1andfo

2 (4r-2 _ 2(8 cot6 - cotI) + (4r 2 + l)(cot61 - 2 cot62 )]

where

cot62 = 4(c0 - £2)

18
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and 8
- 21 - 0)

Differen.t approximating functions can also be used in the one-by-two
method. One possible utilization is illustrated in the following
consideration of the stagnation-point quantities.

C. STAGNATION-POINT VELOCITY GRADIENT. Of particular interest
to us is the stagnation-point velocity gradient which is directly
related to the heat-transfer rate. Since u is determined only atw
discrete locations in the scheme III of the method of integral
relations, differentiation of an interpolation formula is not
accurate. This difficulty can be circumvented by the following
method.

Dividing Equation (28) by rj and taking the limit as r - 0,
we obtain

/dus\ 2
(1 )Psv o v oS d rS) 0+ 2 1(Po - Pwo) + 4-poo -- 0

Similarly, Equation (29) yields

(1 + j) 0 [(1 - v2o) t #o + drwjol+ 2vo (1 - v52) : 0

Eliminating (dus/dr) from the above two equations, we obtain
0

. 2 - 2 l/(y-l)

(28l-v) (1+s20 ) (Ps0 - Pw0 )kdrw 0O( + j)Ps0 VsoC0 (0%

At r = 0, a = n/2. From Equations (23) to (26), (30) and 4'55), one
may conclude that, for fixed values of M,,, and y, the stagnation-
point velocity gradient is inversely proportional to the shock
detachment distance at the stagnation point. Figure 2 shows the

value of + ()d as a function of M. for y =14.

Since
/duq\ (u\d 2(1 M2 N

kdr1 \da/k) (T + 1

we may also obtain the relation that

19
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(,,.)= y+ 1)M~ [ 1(p 5  - Pwo +po]] (56)
°0 =2 (56 )

0 (1 + j)(MO - )Ps5 0vs 0 Vo0, 0

Equation (56) may be used to generate slightly more complicated
equations for the shock-layer thickness and the shock angle. For
example, for the one-by-two method, we may replace Equation (35) by
the following more complicated function

2cota r[(rr -)a + r (57)

Equations (36) and (37) are thus replaced by, respectively,

dE0 + r [aý(2 - r 2 1 - cota1/4 (58)

and
cota = a + 4(eo - El) (59)

The forms of other equations are unmodified. This formulation is
termed the one-by-two GMC (or MCE)-SP method. In essence, the utili-
zation of Equation (56) has increased the order of the function by 2.
For example, Equations (35) and (36) are, respectively, linear and
quadratic in r, but Equations (57) and (58) are cubic and quartic in
r, respectively. All one-by-three methods can be similarly modified
by incorporating Equation (56) in their representation of the shock
angle and the shock detachment distance, and will be termed

a accordingly.

RESULTS AND DISCUSSION

The governing coupled nonlinear algebraic equations are solved
iteratively by the Newton-Raphson method. All of the one-strip
solutions obtained so far are tabulated in Tables 1 to 3. Most oi
the results do not go above M•, = 4. This is because, for shock.-
interference problems, we are mostly interested in lower supersonic
Mach numbers. There ia, however, an upper limit on the free-streamMach number above which no physically acceptable solutions can be
obtained by the present one-strip formulation of the method of
integral relations. This happens when the location of the surface
sonic point, n, is along the line of the jet edge (r = 1). The trend,
that n decreases toward unity as M. increases as predicted by the
theory, was also observed experimentally by Hunt and co-workers
(Refs. (8) and (14)). However, the actual occurrence of n = 1 is
believed to be due to the approximation introduced by the solution
method. Fortunately, this generally occuro above Mw = 4 and hence
is not of serious concern to us for the present problem.

(14) Caning, J. C. and Hunt, B. L., "The Near Wall Jet of a
Normally impinging, Uniform, Axisymmetric, Supersonic Jet,"
Journal of Fluid Mechanics, Vol. 66, 1974, pp. 159-176
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There is also a lower lianit on M•, below which no physically
acceptable solutions can be obtained. For the planar case, this
happens when the calculated value of Msl reaches unity. The fact

that it occurs at M. > 1 is again due to the approximate nature of
the solution method. For the axisymmetric case, this happens at a
much higher value of Mm, and the reason for its occurrence is not
understood at the present time. Fortunately, a quite wide ranqe of
M: does ;xist between which meaningful solutions have been obtained.
Because of this much higher value of the lower limit on M, for the
axisymmetric case, the majority of the results obtained is for the
planar case and these results will be discussed first. The results
for axisymmetric flows will be briefly considered later. All results
shown are for Y = 1.4.

PLANAR JET IMPINGEMENT
The results of the stagnation-point velocity gradient as obtained

by the various methods are shown in Figures 3 and 4 as a function of
SM.. All solutions show the same trend, namely, the initial rapid

increase of (ajdi) at low Mach numbers, and the slow rise toward the

asymptote at high Mach numbers. The difference between one-by-two
and one-by-three formulations is seen to be moderate at high Mach
numbers, and it drops very rapidly as MN is decreased. The same can
be said in regard to the different choice of the governing equations
between GMC and MCE methods. The application of more complicated
profiles (SP method) greatly reduces the differences between one-by-
two and one-by-three formulations, but one-by-three results display
only small effects by the application of these more complicated
profiles. in fact, results indicate that the one-by-three forinu-
lation is quite insensitive to different approximating functions
employed in general. This is not always the case when other
quantities away from the stagnation point are consi.ered, as we shall
see later.

The detachment distance of the shock and the upper boundary of
the wall jet as predicted by the corresponding one-by-two and one-by-
three formulations is shown in Figures 5 to 7 according to different
applications of the method of integral relations. All results show
the following trend: (1) both the shock layer and the wall-jet layer
become thicker as M, decreases; (2% as M. decreases, the location of
the surface sonic point moves away from the line of the jet edge
(r = 1); and (3) for a fixed M., the moderate difference between
one-by-two and one-by-three formulations at the symmetry line
(r = 0) is reduced even further at the line of the jet edge (r =).

The surface Mach number evaluated at r = 1, Mw1 , and the Mach

number behind the shock at r = 1, Msl, are depicted in Figure 8 as

functions of M.. Clearly, neither iwl nor Msl is generally equal to

unity. Hence the boundary conditions employed in References (8) and
(9) are incorrect. The corresponding values of the shock angle at

21
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the line of the jet edge, al, as obtained from various methods are

shown in Figures9 and 10. Similar to M1 , they are seen to be more

method-dependent than quantities such as Mwl.

The surface pressure distribution, as shown in Figure 11, indi-
cates the general insensitivity of the results to various schemes
employed. The only noticeable difference is the somewhat fuller
profile predicted by the one-by-three formulation.

It therefore appears from self-consistency that reasonable
engineering solutions for the stagnation-point velocity gradient
(hence E0) and Mwl (hence uwl and Pwl) have been obtained, Since

heat-transfer rate is proportional to the square root of the velocity
gradient at the stagnation point (Refs. (15) and (16),, peak-heating
prediction is thus even less method-dependent. This, however, is in
direct contras, to the axisymmetric case which, to be discussed
next, is seen to be far from converging.

AXISYMMETRIC JET IMPINGEMENT
Among all the ntethodsemployed, only one-by-two GXC and MCE

schemes have produced solutions which appear not to violate some of
the obvious physical constraints such as Pw0 > Pw2>Pwl>pwn and,

as Mw decreases, both (du/dr)0 and uwl will also decrease. The

results are tabulated in Tables 3a and 3b. The lowest M. shown in
each table is the lower limit of the Mach number below which no
solution is obtainable. As we can see, the corresponding Msl is far

from being unity. The reason for the existence of this relatively
high value of the lower limit of M is not understood at the present
time.

The axisymmetric results are qualitatively similar to the planar
solutions. There are noticeable differences also. For example, for
the axisymmetric case, the shock-layer thickness drops off at a much
faster rate as one moves away from the stagnation point. This results
in a smaller shock angle, al and a thinner wall-jet layer. In fact,

the rate that al drops with respect to decreasing M. is so large that

Msl turns out to be increasing slightly as M is decreased. This

trend is clearly opposite to that of the pianar case which shows the

(15) Cohen, C. B. and Reshotko, E., "Similar Solutions for the
Compressible Laminar Boundary Layer with Heat Transfer and
Pressure Gradient," NACA Rpt 1293, Lewis Research Center,
Cleveland, Ohio, 1956

(16) Fay, J. A. and Riddell, F. R., "Theory of Stagnation Point Heat
Transfer in Dissociated Air," Journal of tCe Aeronautical
Sc''-nces, Vol. 25, 1958, pp. 73-85, 121
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monotonic decreasing behavior as was depicted in Figure 8. Since the
axisymmetric solution appears to be very method-dependent (as can be
seen easily by the fact that even one-by-two GMC- and MCE-SP methods
yield no physically acceptable solutiorns), results obtained by other
methods ire needed before these different trends can be ascertained
or refuted.

CONCLUSIONS

The major conclusion that we may draw from the present study is
that solutions that satisfy all well-posed boundary conditions can
be obtained by the one-strip formulation of the method of integral
relations. The application of the scheme III of the method has
enabled us to avoid both the unwanted singularity at the low super-
sonic Mach number and the numerical difficulty of satisfying the
regularity condition at the surface sonic point peculiar to the
scheme I of the method. Rational engineering solutions for the
stagnation-point velocity gradient and, hence, the peak heat-transfer
rate have been obtained for a planar supersonic balanced jet
impinging normally on a flat surface. However, more theoretical
and/or experimental studies are needed before present results can be
quantitatively assessed. Toward this goal, a two-strip formulation
of the method of integral relations has been completed. Unfor-
tunately, because of the time limitations, no quantitative results
have yet been obtained. For the sake of completeness, this formu-
lation is included in the Appendix.

Since, for impingement angles between normal (90 degrees) and
about 50 degrees, the effect of the angle of impingement on the
peak pressure was found experimentally by Henderson (Ref. (17)) to be
small, the present planar jet-impingement model might be coupled with
the shock-interference model of Edney (Ref. (1)) as programmed by
Morris and Keyes (Ref. (18)) to predict type IV shock-interaction
effects. In view of the extremely short computer time required by
the present method (typically less than five seconds on a CDC 6500
computer for one converged solution at one Mach number), this
approach is indeed very attractive.

717) Henderson, L. F., "Experiments on the Impingement of a Super-
sonic Jet on a Flat Plate," ZAMP, Vol. 17, 1966, pp. 553-569

(18) Morris, D. J. and Keyes, J. W., "Computer Programs for Predict-
ing Supersonic and Hypersonic Interference Flow Fields and
Heating," NASA TM X-2725, Langley Research Center, Hampton, Va.
1973
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APPENDIX A

M O T RS TWO-STRIP FORMULATION OF THE JET-IMPINGEMENT PROBLEM

METHOD OF INTEGRAL RELATIONS - SCHEME I
The flow field is divided into two strips in the axial (y-)

direction by the middle line y = c/2. The governing equations are
different depending on whether they are in the shock layer
(0 < r - 1) or in the wall-jet layer (1 :E r <- n).

A. SHOCK-LAYER REGION. IntegratUig the axial moment equation
(2) from 0 to c/2, we obtain

d r/ puvdy r1 dv r3PUV + rj (P - P)2 dr H H H j H

+ PHVH- Pwv8 0 (Al)

where the subscript H denotes quantities evaluated at y = e/2. If a
quadratic profile in y is assumed for the integrands in Equations
(Al) and (27), after some algebra, we may obtain, as an approximation
to Equation (2), the following two ordinary differential equations:

d(rJ•PsUsVs) + 4rJ{PsVs(Vs + usCoto)

PHVH( 2 VH + uHCoto) + B(ps - 2pH + pw)l= 0 (A2)

a (rEP1oux vH + 1P{sV(Vs 4 UsCoto) +

2 PHvH( 2 vH + uHCoto) + a(ps + 4 PH - 5Pw = 0 (A3)

Equations (5) and (17) have been used in the above equations.
Similarly, Equations (1) and (3) yield

d [rJpu - PsUs)] +4(

d-L c(wU u + 4r' {PH( 2 VH + uHcOtO)

- Os(Vs + 11 Coto)} = 0 (A4)
S S

d [rJ c(2PHuH + PU)] + rJ{SPs(Vs + usCoto)

v2PH(2VH + u Hcotc)} =0 (A5)

A-I
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d [rj(PwU 2 + Bpw -PsU 2 -P + 4rj{PHUH(2
dr - S S VH + uHcota)

- 0 sU s(Vs + U scoto) + (PH - Pcota} = jBE(Pw - Ps) (A6)

and r 2 1
[rj•:(PsUs + BP+ 22p+ ) + rJ{5PsUs(v + Uscota)

Pr-S H H aPH] co
2 PFUH( 2 VH + UHCOta) + BOP s - 2pH)cota} = jBE(2PH + Ps) (A7)

The energy Equation (4) gives
Pw = pw(1 2)(8

and
P(1 - 2 2 (A9)

Thus, Equation (A2) defines the rate of changb of 0, Equations (A4),
(A6) and (A8) tho.e of uw, pw and pw' znd Equations (A3), (AM), (A7)

and (A9) those of uH' VH, Pp and pH" Because of Equation (18), one

may replace Equations (A6) and (A8) by the simpler algebraic
relations, Equation (30) and

$W E' (AlO)

Therefore, there are six ordinary differential equations (Eqs. (5),
(A2) to (A5) and (A7)) for a' E, uw, uw, VH and PH' Initial

conditions are, from Equations (19) to (21), at r = 0

U =0
HO

Uw0 =0

PHO = L . . .E so

and a0 = n/2

The two missing initial conditions for E0 and vHO are supplied by the

two regularity conditions at the surface sonic point and the singu-
larity on the middle line. It is known for the jet-impingement
problem that the surface sonic point, r - n, is outside the shock

A-2
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layer (Ref. (8)), but the location of the other "sonic" point on themiddle line relative to the line of the jet edge (r = 1) is unknowna priori. These singularities and the associated regularity
conditions, well-known for blunt-body problems, are essential forclosing the system of equations. They will be discussed in detail

later.

Because the structure of Equation (A2) is similar to Equation
(28), Equation (A2) will also become singular as

d(psusvS)
da =0

and do/dr will become unbounded. A formulation based on scheme III
will thus be required. Before this, however, we shall complete thepresent discussion of the scheme I method by considering the wall-
Jet region.

B. WALL-JET REGION. Integrating Equations (1) to (3) from theplate to the middle line and from the plate to the upper boundaryof the wall jet, anu after some straightforward algebra, we obtain

d .j u: v + 4r 3{B(p -
d j + 4 j- 2 PH + Pw) PHvH(2VH + uHcot6)} =0 (All)

d(rJcPHUHvH) + r--{2PHVH(2V + uHcotf) + 8(pj + 4 PH 5pw)} =0 (A12)

d[rJ£(PwUw - pj) + 4rioH(2vH + uHcotO) =0 (A13)

d--[r c( 2 PHuH + Pju.)] - 2rJPH(2vH + uHCOt 6 ) = 0 (A14)

d 3c(pju? + 2PHUH + 8pj + 28 + rJ{6(5pj 2

- VU(2VH + UHcot6)} = jSe(2PH + Pj) (AI5)PuH 2 H H

As in the shock layer, the other ordinary differential
equation that comes from the radial momentum equation (3) is re-placed by the algebraic equations (30) and (A10). In addition,
there is the geometric relation, Equation (6), the boundary conditionsat the wall-jet boundary, Equations (8) to (16), and the energyequation (A9). Therefore, there are six ordinary differentialequations (Eqs. (6), and (All) to (A15)) for c, 6, uw, UH, vH and

A-3
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H" Matching conditions at r = 1 supply the initial conditions.
One may combine Equations (A13) and (A14) to give

r7(Pw uw + 4 PHUH + P"ui) E = 1 (Pwluwl + 4 PH1UH1 + pjuj1 ) (A16)

which. being an algebraic relation, can be used to replace, e.g.,
Equation (A14).

C. REGULARITY CONDITIONS. Utilizing Equation (A10) and after
some straightforward algebra, we may rewrite Equation (A13) in the
form

du N1
SD-

1
where

DI - [ - (Y + l'u2w
1 y - I ~w]

To have a finite value of du w/dr at the singularity given by

Equation (33), we require that Ni 1 0 as D1 - 0 at r = n. This

provides us with the regularity condition which, using Equation (All)
at r = n to get rid of d6 n/dr and after some straightforward algebra,

becomes

- cot6 ) (P wnu wncos26 + pjqjsin 63

+ 4pHn(2vHn + UHnCOt 6 n)(qjcos26, + vH cos6,)

- 4Bcos6nlPj - 2PHn + pwn) = 0 (A17)

The location of the singularity on the middle line is again
unknown a priori. Two different formulations are needed depending
on whether it is larger than 1 or otherwise. Let's consider the
first case (henceforth referred to as Case W), and denote the
singularity to be at r = C > 1.

From Equations (A9), (A12), (A14) and (A15) we may obtain

du H N2
du 2

2
where

D2 - (y + 1)u 2 + (y - 1)(v - 1)

A-4
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Therefore, as D ÷ 0 at r = 4, we need to impose the regularity2
condition that N2 .0 at r =4. Using Equation (All) at r = 4 to get
rid of d6E/dr (where the subscript E denotes quantities evaluated

at E) and after some tedious but straightforward algebra, we may
obtain the regularity condition

2 2
pjqjsin 60(y - l)sin6E - yqju H] I - cot6U)

+ PH•( 2 VH4 + uH cot 4 1 [A(l + 3v24 - uH) - 4CBVH]

+ Cu [(2p J ] + [4 CB(Pj 2A CAH• 2 p HE)cot6E --- PHE B 2PHE

+ pw) + C AAHE (pj + 4PH- 5pw)]= 0 (A8)

where
CA = (y - 1)qjcos26,

CB = (1 - y + 2yqj uHsin6 ,)cos6B

and , at r =

U HE =) 1 H- VH 1/ (A19)

It is easy to show that Equation (A19) is equivalent to uHE = aHE-

Let us now consider the case when the singularity on the middle
line occurs in the shock layer. Henceforth, we shall refer to this
case as Case S and denote the singularity to be at r = ; < 1.
From Equations (A3), (A5), (A7) and (A9) we may obtain

du N3

H 3dr 53

where again

2 2D3 ~ (Y + l)uH + (Y - 1)(v - 1)

This is to be expected since the structure of the governing
equations in both layers is similar. Therefore, as D 0 at

r = N3 • 3  0. Using Equation (A2) at r = • to get rid of da /dr

(where the subscript • denotes quantities evaluated at r =1 and

A-5
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after some tedious but straightforward algebra, we obtain, at
r= 1

uH )= Q / (A20)

and

Ldp 1uuH(v p~ + P u) 2 20p u] (--Coto)
+ P s (Vs + uScoto)[5UsuH + 2 0(vsvH - 5)] + 2 0 PH( 2VH + uHcoto)

(1 + 3v 2- u 2) + 0(5p - 2.uo~ + 20 2vH(ps + 4PH- 5pw)

H s HH H s

-JUHE12PH + Ps)/r - dUH + uH do 20 -2B

{Ps s r( - cdto) + 4[psvs (v8 + usCoto) - PHVH( 2VH

+ uHCoto) + 8(p - 2pH + pw)]J = 0 (A21)

where Equation (A21) is evaluated at r =

D. STAGNATION-POINT VELOCITY GRADIENT. Dividing Equation
(A2) by rj and taking the limit as r 4 0, we obtain

(1 + J)PsO Vso00(d--) + 4st s0- 2PHqr2

+ 0(ps0 - 2pH0 + Pwo)} 0

Similarly, Equation (A4) yields

duw du 0(1 + j* w r p0 " s )0 + 4(2OvH0 0 - Ps0vs0) =0
0 o 0 0o

Eliminating (dus/dr) 0 from the above two equations we obtain

Sdu• 4 [2PHOvHO(vHo - v8 0) - ONO - 2PH0 + Pw0) (

!dr--)-0 (1 + j)Pw0V20c0

for fixed values of M% and Y, Equation (A22) indicates that the
product 0 (duw/do0 depends also on VHO0

A-6
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METHOD OF INTEGRAL RELATIONS - SCHEME III
2. two-by-four formulation will be presented as an example below.

To extend the formulatiQn to two-by-n with n > 4 is straightforward,
but the algebra involved will be much more complicated. In addition,
there will be more equations to solve. This certainly will aggravate
the convergence problem. For simplicity, we shall only present the
details of Case W. The other case is very similar.

1
The flow field is divided in the radial direction into (0, •,

1, E, n). In the shock layer, Equations (48) to 53) obviously still
hold. In addition, Equations (A2) to (A5) are of the form of
Equation (51), and hence they can be put into the forms of
Equations (52) and (53), with the integrals and coefficients given
by Equations (52a) to (53d). Equation (A7) is of the form

df- + rg = jh (A23)
Urg

where g and h are, respectively, odd and even in r. In addition,
g = 0. Straightforward integrations of Equation (A23) over r yield

.1/2 _1/2
f2 - f0 + 1 rlgdr = if hdr (A24)

and 0

fI - f 0 +1rigdr = jf1hdr (A25)

0 0

Consider the continuous approximating functions for g and h as

r2
g z 1[89 2 - g, + 4(gl - 292)r2]

(16h 2 - h - 15h 0 ) 2 4(3h0 + h1 - 4h 2 ) 4
h h 0 + 3 3+

Equations (A24) and (A25) become

2

- fo.+ •1 (akigi - bkihi) = 0 k = 1,2 (A26a,b)k fk. kg

where

al0 Ma 2 0 - 0

(3j + 4•)
all 1 3 (J + 2)• +74)

161•2 3( ( "+ 2)(J +' 4)

A-7]I



, • • • • •.•". •. •.• •• -;-• •- ° - -'---• -'••T, '•;-•• -••. ." .d"- .. • ••

NSWC/WOL/TR 75-195

_2 - (j+l)
a 2 1 = 3(j + 2)(j + 4)

2 0-J+l)(34 + 14)a22 =3(j + 2)(j + 4)

b0=

b 20

b210 = fi0

11 45

b 32j
12 45

20 60

and 17Jaltd 22 =90

In the wall-jet layer, consider

dc = z r (n 2 _ r 2) (t2 r 2)
- dr = cot6 ~ rL2 i) 2 1) cot61 +

(2 r 2 H - rr2r) (n2 r2 2S(•2 2) ( n2)cot6n + "r -r)(l- r2) Cot
_2_ f ('2 2 2 2- 2)

n(C ~ ~ ~ )(l n l E

Direct integration yields

C C1 - ,1 IN2_1 2_1)6n(r 2 -1 cots 122_3(2+E2)r2+1+.2 + 1) + c[6n 2 g2 -3(2 + 1)(r2 + 1) +

12& 1 ( 2 _ 1)( 2 Hl ) 2

cot6
2(r 4 + r 2 + 2 2 2 •22- 3([2 + M)(r2 + 1) +

2(4+ r 2 + 1)1 + c(n2. t (1_ 2 [6n,2 - 3(n2 +l1)(=2 +1) +

2(r 4 + r 2 + 1)1 (A28)

A-8
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After some algebra, we obtain
SE (21_i (cot6 1_2

C C - 1ý2 _l)j O (3n 2 -2_2)-
1 12 I)(A29)

c-U (2_) 2 _ i (2t2 -3n 2 + 1)
n( i2 _ n 2) 11 - 2) 2 _ 2)

and e is obtained by interchanging t and n in Equation (A29).

Equations (All) to %A14) are of the form of Equation (51). The
even function g can now be epproximated again by the Lagrangian
interpolation formula

(n2 _ r2 HC 2 _ r2( 2 - r 2 )(1 - r 2)
(n2 i12 _ g, + ) g
2 - n2 M - n22

S(2 - 2 ( - r2)
+ ( -rM( lE (A3011

(n2 t 2)1 - t2)

which is symmetric in t and n, i.e., the equation is un-.;,dnged by
interchanging t and n. Integrating Equation (51) over r and using
Equation (A30), we obtain

fa 1 1 + glG(n,',l ; a) + g G(l,t,r ; a) +

gtG(l,#l,t ; a) = 0 a = , (A31a,b)

where

S. (x,y;r)

G(x,y,z ; r) 2 2 (A32)
(x 2 z )(Hy 2 z

and

SSj(x,y;r) 2 + r) - (j + 3)

1 11 (A33)

Equation (A15) is of the form of Equation (A23). Using
Lagrangian interpolation formula for approximating the odd and even
functions g and h, respectively, we obtain by straightforward
integration

A-9
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fa f + glH(rn''l ; a) + g H(1,ý,n; a) + gýH(l,n,c ; a) =

j[hlK(r,,&,l ; a) + h nK(1,&, ; a) + h K(l,n,& ; a)] ; a = &,n

(A34a,b)

where S +l(x,y ; r)

H(x,y,z ; r) -( z2  (A35)
z (x2 _ z2 Hy2 )

and

S; S0(xy ; r)(A36)Nc~y• r 2 : - z_ 2 H 2- z•• 6
There are 22 basic unkstowns in the two-by-four formulation: c0' c2

eI' 6S, 6n, uw2 , U wl, VHO, VH2 , VHlI VHt, VHnI 'H2' UHl' UHn,

PH2' PHI' PH,' PHn' & and n. The basic equations are: Equations

(A2) to (AS) in the forms of Equations (52) and (53); Equation (A7)
in the forms of Equations (A26a,b); Equations (All) to (A14) in the
forms of Equations (A31a,b); Equation (A15) in the form of
Equations (A34a,b); and the regularity conditions, Equations (A17)
and (Ai8). Total number of equations is also 22 and the system is
closed.

A-10
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